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Abstract

Hemodynamic monitoring has evolved and improved greatly during the past decades as the medical

approach has shifted from a static to a functional approach. The technological advances have led to
innovating calibrated or not, but minimally invasive and noninvasive devices based on arterial pressure
waveform (APW) analysis. This systematic clinical review outlines the physiologic rationale behind these
recent technologies. We describe the strengths and the limitations of each method in terms of accuracy and
precision of measuring the flow parameters (stroke volume, cardiac output) and dynamic parameters
which predict the fluid responsiveness. We also analyzed the place of the APW monitoring devices in goal-
directed therapy (GDT) protocols in cardiac surgical patients. According to the data from the three GDT-
randomized control trials performed in cardiac surgery (using two types of APW techniques PiCCO and
FloTrac/Vigileo), these devices did not demonstrate that they played a role in decreasing mortality, but only
decreasing the ventilation time and the ICU and hospital length of stay.
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Introduction

The pulmonary artery flotation catheter (PAC) has
been considered as the gold standard of hemodynamic
monitoring for a long time and it still remains a useful
device in situations when the knowledge of pulmonary
artery pressure values (PAP), pulmonary capillary
wedge pressure levels (PCWP) and oxygenation
parameters are required [1]. Much has been changed
since the PAC was first introduced by Swan and Ganz
in 1970. Connors et al. [2] raised important questions
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regarding the value of PAC as a safe, accurate and
precise tool in treating a variety of intensive care unit
(ICU) patients. In this observational study the PAC
was associated with an increased risk of mortality and
increased resource use. A recent Canadian multicenter
longitudinal randomized study has shown a 50%
reduction in the rate of PAC use over 5 years [3]
because PAC is invasive and is associated with various
complications (infections, arrhythmias, thrombosis and
pulmonary artery rupture) and financial costs [4]. The
last decade was characterized by a growing interest
in innovating, less invasive devices that could be
substituted for the PAC. Some of these new techniques
were integrated into appropriate protocols that guide
the hemodynamic evaluation and the subsequent
therapeutic interventions and it was proven that their
optimal use can reduce the morbidity, the mortality and
can improve the outcome in both surgical [5-6] and
non-surgical patients [7]. These recent technologies
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range from totally non-invasive to marginally less
invasive procedures than the PAC.

Basic description of pulse waveform
technology (arterial pressure waveform
analyzers)

The method of calculating stroke volume (SV) from
the contour of the arterial pressure waveform (APW)
dates from the end of the nineteenth century but was
brought back into daily clinical practice by the advance-
ments in computer technology in the 1980s [8]. In 1899
Otto Frank described the circulation as a Windkessel
(air chamber) model [9]: the fluid moves into elastic
tubes because the heart acts as a pump used by the
firemen (a pulsatile pump able to deliver a peripheral
continuous flow) pumping fluid into the tubes through
chambers containing air (not existing in humans).
Because the tubes were completely filled with a non
compressible fluid the author states that the air (being
compressible) mimics the aortic distension or com-
pliance. The main conclusion was that the flow (SV)
could be calculated from the variation of pressure. This
statement is true but it is not so easy to be applied into
practice. In fact, during the cardiac cycle both volume
and pressure change over time but the relationship
between arterial pressure and volume (i.e., compliance)
varies from individual to individual, and for any given
individual compliance there are also variations as a
nonlinear function of arterial blood pressure and sym-
pathetic status. More than this, the pulse pressure (a
parameter used to estimate the SV in many algorithms)
is composed from antegrade waves that drive the
forward flow as well as retrograde reflected waves
that retard the forward flow. Since the first description
of the Windkessel two-compartments model the
researchers have developed our knowledge offering
today various algorithms which are based on the APW
analysis for the continuous measurement and moni-
toring of the SV continuously, in a beat to beat manner.
Some of this apparatus known as “pulse contour ana-
lyzers” (those produced by Pulsion Medical System —
Germany and Edwards-Lifesciences — USA) are
based on the measurement of the SV derived from the
area under the systolic portion of the APW. The “pulse
contour” technology uses the “Wesseling equation”
(Equation 1): the contour of the APW is dependent on
SV and the SV can be estimated from the integral of
the change in pressure over time considering the area
of the systolic part of the curve [10].

t1dp
to dt

SV= Systolic area / Impedance =

where: t0/t1 for dP/dt: the integral of the change of the
pressure from end diastolic t0 to end systolic t1, Z: impe-
dance of the aorta

Karel Wesseling and co-workers went further and
introduced the 3 element Windkessel model, an algo-
rithm which uses the systolic area but with correction
factors for the impedance: the arterial compliance and
the systemic vascular resistance (SVR). Obviously we
need to know the value of the total impedance and this
value can be either calculated during a calibration
phase or only estimated mainly based on the patient’s
demographic data.

Today two types of APW analyzers are commer-
cially available: “calibrated” systems (they require a
central venous catheter — CVC and a peripheral ther-
mistor tipped specific arterial catheter in order to use
the trans-pulmonary thermodilution — TPTD measure-
ment of the cardiac output — CO as initial calibration)
and “uncalibrated” systems which have an auto-
calibrating proprietary algorithm based on the patients’
characteristics. The LiDCO technology is a peculiar
calibrated APW analyzer because it does not use the
pulse contour method to measure the SV but a special
arterial pulse power analysis method.

Calibrated pulse waveform analyzers

The PiCCO technology (Pulsion Medical Sys-
tems — Germany)

This technology emerging in the early 1990s was
the first calibrated APW analyzer introduced into clinical
practice under the name of PiCCO but nowadays we
use already the second or the third generation of such
apparatus namely: PiCCOplus and PiCCO,. The initial
calibration consists of measuring the CO by TPTD
method. A 10-15 ml cold 0.9% saline bolus is injected
through a CVC and the change in the temperature
overtime will be measured and analyzed by a thermistor
tipped catheter inserted in a central artery (femoral,
axillary, brachial, radial ) [11]. The CO is calculated
using Stewart Hamilton thermodilution equation
(Equation 2).

_ (Tb—Ta) x Vix K
d_T
dt

co

where: Tb = temperature before injection, Ta = tem-
perature after injection, Vi = volume of injectate, K =
constant, dT/dt = change in temperature per change in
time

Many studies have proved that the TPTD-CO
values agree very well with the PAC-CO values in a
big variety of patients: cardiology, cardiac-surgery, liver
transplant, burns, paediatrics, acute respiratory distress
syndrome [12-21]. The calibration serves to measure
not only the CO but also the individual aortic compliance
(Cp) which will be further used to measure continuously
beat by beat the SV as shown below (Equation 3):
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_ p(t) dp
SV = cal HRf(SVR+ C(p) dt) dt

where: Cal = patient specific calibration factor (deter-
mined by TPTD), S = area under systolic part of the
pressure curve, Cp = individual aortic compliance, dP/
dt: shape of pressure curve

As seen in the equation above (a second generation
algorithm applied by Pulsion), the SV is measured beat
by beat using the thermistor tipped catheter inserted in
the artery assuming that the area under the systolic
part of the arterial pressure waveform is related to the
SV by aortic impedance but the algorithm itself is much
more complicated than the original Wesseling equation
(SV = systolic area / impedance) including also SVR.
In conclusion, once calibrated by TPTD, the system is
able to measure continuously (in fact as a mean for
every 12 seconds) the SV, cardiac index (CI), CO,
stroke volume variations (SVV) and pulse pressure
variations (PPV). The SV, CI and CO measured by
PICCO pulse contour analysis were shown to agree
well with the values obtained with PAC [22-28]. The
calibration should be repeated every 8 hours in hemo-
dynamically stable patients and approximately every 1
hour in unstable patients or when vasoactive therapy
is given [29-30]. The TPTD also offers the direct mea-
surement of other parameters needed for a comprehen-
sive evaluation of the hemodynamic status: the intra-
thoracic thermal volume (ITTV), the pulmonary thermal
volume (PTV) and the global end-diastolic volume
(GEDV = ITTV-PTV). Based on the relationship
between GEDV and intra-thoracic blood volume
(ITBV = 1.25 x GEDV) the apparatus will calculate
the value of the extravascular lung water (EVLW =
ITTV-ITBV) and the pulmonary vascular permeability
index (PVPi = EVLW / PBV). A variety of studies
have validated the accuracy and the precision of the
PiCCO technology in cardiac surgical patients stable
or not [31-34], but to date the PiCCO technology was
used only in two goal-directed therapy (GDT) rando-
mized control trials (RCT) in cardiac surgical patients.
The first study was performed in perioperative off-pump
coronary artery bypass surgery (OPCAB) with the
following targets in the PiCCO group: ITBVI = 850-
1000 ml - m?2, MAP = 60-100 mmHg, HR <90 beats
min”', Hb>8 g-dl", CI>21- min' - m? and ScvO, >
60%. Unfortunately, achieving these complicated
targets did not demonstrate a decrease in mortality or
morbidity but only a decrease in the ICU stay and hos-
pital stay respectively, in comparison with the control
group [35]. Neither a second GDT-RCT study in valve
repair surgery (PiCCO, versus PAC, with the follow-
ing goals in the PICCO, arm: GEDVI 680-850 ml - m?,
EVLWI <10 ml - kg!, MAP = 60-100 mmHg, CI > 2

1 min" - m?, DO,I=400-600 ml - min" - m? and ScvO,
> 60%) found a decrease in mortality or morbidity but
only a reduced period of postoperative mechanical
ventilation in the PICCO, group [36].

EVI000 / VolumeView (Edwards Lifesciences —
USA)

The VolumeView technology is a part of the
EV1000™ platform and it works in a similar manner
with PiCCO: it uses the TPTD for the initial mea-
surement of CO value and calibration of the system
(always using the Stewart Hamilton equation). Once
calibrated, the VolumeView sensor will measure SV
beat by beat based on a complex proprietary “combi-
nation” algorithm which combines the conventional
approach (the SV value is direct proportional with the
area under the systolic part of the APW and inversely
with the impedance) with an advanced wave shape
approach (analysis of the pressure waveform of the
entire heart cycle). The system obviously needs a CVC
and a thermistor tipped specific catheter into the
femoral artery (for calibration by TPTD) and the
VolumeView sensor. Like the PICCO systems this tech-
nology provides the operator important hemodynamic
variables such as CO, CI, SV, SVV, PPV, GEDV and
EVLW. The GEDV and the EVLW values are
calculated based on the thermodilution curve but using
different equations in comparison with those used by
PiCCO. Validation studies confirmed the agreement
and the interchangeability between the hemodynamic
variables (CO, GEDV and EVLW) measured by TPTD
with the new VolumeView system and the PiCCO
system [37-39]. The system has not yet been included
in any study focusing on GDT in cardiac surgery.

LiDCOplus (LiDCO Ltd, Cambridge, UK)

The LiDCOplus system is different from the PICCO
and EV1000 as it does not use the pulse contour method
to measure the SV but a pulse power analysis based
on the principle of the conservation of mass (power),
assuming a linear relationship between net power and
net flow inside the vascular system. The system
combines lithium dilution as calibration method with a
proprietary algorithm (PulseCO system autocorrela-
tion) for an APW analysis in order to track the conti-
nuous changes in the SV detected by a specific sensor
connected to a standard arterial line [40]. The tech-
nique was described in 1993 [41] and the calibration
method is represented by the lithium dilution (a lithium
dilution sensor with a lithium selective electrode). This
electrode calculates the voltage change by using the
Nernst equation in the flow through the transducer
which is connected to an arterial line and is used to
detect lithium. Isotonic lithium chloride 150 mM, 0.002-
0.004 mmol - kg'! is injected through a central or even
a peripheral venous line [42]. A concentration time
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curve is created and the CO is measured using the
following formula (Equation 4):

LiCL x CO

0= —————
Area x (1 — PCV)

where: LiCL = dose of lithium chloride in mmol, Area =
is the area under the lithium time dilution curve, PCV =
packed cell volume which derived from haemoglobin
concentration

After the calibration, the continuous SV measure-
ment is performed in three phases: the first phase is
transforming the arterial pressure waveform into a
volume time waveform, then the system will derive
SV and cardiac cycle duration and eventually the no-
minal SV is calculated. The need for frequent blood
samples, the influence of non-depolarizing neuro-
muscular blockers are the main disadvantages of this
technology. The accuracy of the device was seriously
questioned during inaccurate sodium and haemoglobin
measurements (each 1 g - dI"! difference in haemoglo-
bin concentration results in 4% difference in the CO
measurement) [43]. Meantime, the validation studies
confirmed that LiDCO is a sensitive minimally invasive
beat-to-beat monitor of the SV and CO and it also
offers some dynamic parameters of fluid responsive-
ness (SVV, PPV) which have shown to be able to
predict the fluid responsiveness both during OPCAB
and conventional coronary artery bypass graft (CABG)
surgery [44-47]. The system was used for early post-
operative GDT strategy in major abdominal and
vascular surgery (the main targets in the study arm
were: increase SV > 10% with fluids and DO,I > 600
ml - min' - m? with fluid and/or dopexamine) [6] with
interesting results: reductions in post-operative compli-
cations and duration of hospital stay in GDT patients.
In contrast, LiDCOplus was never used in GDT
protocols addressed to cardiac surgical patients.

Uncalibrated pulse waveform analyzers

FloTrac/Vigileo (Edwards Lifesciences — USA)

This system uses the arterial pressure waveform
to measure the CO detected through a proprietary
transducer (FloTrac) attached to a standard arterial
line connected to the Vigileo monitor. The system does
not need to be calibrated with an indicator or bolus of
cold saline because this technology is based on the
assumption that the SV is proportional to pulse pressure
and the aortic impedance can be estimated using a
sophisticated algorithm (based on gender, age, height,
weight). During the last 10 years the SV algorithm
was under continuous modifications aiming at improving
its accuracy and precision: till now four software gene-
rations were developed. The first generation software

used an algorithm based on the patient’s demographic
data (age, sex, weight and height) and a data base of
CO measured by PAC in different clinical conditions
correlated with the standard deviation of pulse pressure
measured over 20 seconds window. The second gene-
ration software (1.07 or later) was designed to perform
a self-calibration every minute. The third generation
software (3.0 or later) which uses a dynamic tone tech-
nology and more physiological variables demonstrated
an improved accuracy in cardiac surgical patients [48],
in liver transplant [49] and in general surgery [50].
Because of the unreliability of the third generation
software to track the changes in CI with vasopressors
administration [51] the fourth generation software
(version 4.00) was developed based on a new correction
factor for acute changes in SVR. Despite these deve-
lopments a recent study [52] performed in cardiac
surgical patients demonstrated that the CO values
measured by the fourth-generation software still evi-
denced an unacceptable discrepancy in comparison
with PAC-CO values. In contrast, the trending ability
of tracking the CO after vasopressor administration
was greatly improved [52]. Being easy to use and mea-
suring also the SVV the system was widely used with
mixed results in terms of accuracy and precision in
different patient populations. Regarding the cardiac
surgical patients, the performance of FloTrac/Vigileo,
PiCCOplus, and Vigilance CCO in CO measuring were
comparable when tested against intermittent
thermodilution in elective cardiac surgery [53]. In com-
parison with PAC the FloTrac/Vigileo was proved to
be a reliable method for CO assessment both during
CABG surgery [54] and after elective cardiac surgery
[55] but remains sensitive to changes in vascular tone
[56]. Newer studies have emphasized that the system
is not accurate in cardiac surgical patients with low
CO (especially when CI < 2.2 I/min/m?) and in those
with low ejection fraction (< 40 %) [57-58].

In CABG patients FloTrac derived SVV predicted
fluid responsiveness with an acceptable sensitivity and
specificity [59]. In elective cardiac surgery SVV
assessed using FloTrac /Vigileo and PiCCOplus exhi-
bited similar performances but the FloTrac-SVV was
observed to have a lower threshold value than the
PiCCOplus-SVV (10% versus 13%) [60]. In compa-
rison with LiDCOplus, in a study on post-CABG
patients the SVV values offered by the two systems
were significantly different, the two methods being not
interchangeable [61]. Since its introduction, the per-
formance of uncalibrated FloTrac/Vigileo in terms of
accuracy and precision of the measured CO has much
improved particularly in hypodynamic and normo-
dynamic patients but the trending capacity is still
affected by changes in the vascular tone [62]. The
only one GDT study in postoperative cardiac patients
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which used FloTrac/Vigileo (the targets in the FloTrac
arm were: CI=2.5-4.2 1 min"! - m?2, SVI=35-60 ml/
beat - m2, SVRI = 1500-2500 dyn - s - cm® - m?,
DO,I=450-600 1 - min" - m?, ScvO, > 70%, SVV <
10% by giving fluid, inotropes, vasodilators) demon-
strated decreased ventilation time and decreased ICU
and hospital stay in the FloTrac group in comparison

with the control group but no change in mortality [63].

LiDCOrapid (LiDCO Ltd, Cambridge, UK)

The LiDCOrapid and LiDCOplus use the same
proprietary algorithm tracking the continuous change
on the SV but LiDCOrapid instead of using the lithium
dilution technique as a calibration method uses in vivo
derived nomograms (based on age, height, and weight)
for SV and CO estimation. The system is easy to set
up (1 minute) with the use of only a standard arterial
line and any transducer kit and will also offer to the
clinician many other important hemodynamic
parameters as: SVV, PPV, SVR. Despite the initial
enthusiastic approach, LiDCOrapid failed to
demonstrate a good correlation for SV values when
compared with the PiCCO pulse contour [64] or
transesophageal Doppler [65]. Regarding the ability
of the LiDCOrapid-SVV to predict the fluid respon-
siveness, some studies performed in high risk vascular
surgery [66] and in cardiac surgery [67] confirmed
that this parameter is an adequate predictor of the CO
response to fluid administration. LiDCOrapid was never
used in GDT protocols in cardiac surgery but in
obstetrics where the main advantages were less ma-
ternal hypotension and much less neonatal hypercapnia
and hypoxemia in the GDT group than in the control
group [68].

ProAQT/ PulsioFlex (Pulsion Medical Systems,
Germany)

Pulsion medical recently introduced ProAQT tech-
nology (as part of the PulsioFlex platform) which offers
a minimally invasive approach (very similar to
FlowTrac/Vigileo) to patient hemodynamics with a
standard arterial line (radial) and a specific sensor
(ProAQT sensor) on the basis of pulse contour analysis
with a proprietary algorithm without calibration. The
PulsioFlex platform can be calibrated externally
(against echocardiography for example) but also
upgraded with a PiCCO module and will become a
TPTD-calibrated system. The ProAQT technology is
able to estimate beat by beat the SV and to calculate
the CO, SVV, PPV and SVR. The preliminary results
of a multi-center validation study on unstable critically
ill patients indicated that the CI can be reliably moni-
tored with PulsioFlex technology which was also able
to keep track of changes in CI [69]. In a recent study,
when compared with Vigileo in critically ill patients,
ProAQT was better for tracking norepinephrine-

induced changes in CI, equal to Vigileo for tracking
fluid-induced changes in CI and inferior to Vigileo™
for estimating the absolute values of CI [70]. In CABG
patients the CO derived by ProAQT sensor showed a
sufficient accuracy compared to TPTD [71] but in
OPCAB surgery the results were unsatisfactory if the
system was not calibrated externally [72]. A GDT
protocol based on ProACT was applied in major non-
cardiac surgery (the targets in the ProAQT group were:
PPV <10%,CI>2.51- min' - m? MAP > 65 mmHg,
manipulated by giving fluids, inotropes or vasopressors)
and did not find significant differences between the
protocol and the control group in terms of morbidity,
mortality or length of stay in ICU [73]. The Pro ACT
was also used in a GDT protocol in abdominal surgery
(general, gynecological and urological patients) with
the main targets represented by a PPV <10 %, a CI1 >
2.51- min"! - m? and a MAP > 65 mmHg, manipulated
by giving fluids, inotropes or vasopressors, with pro-
mising results: a decrease in postoperative compli-
cations (infections included) in the study group [74].

MostCare / PRAM (Vytech Health, Padova,
Italy)

MostCare technology is a non-calibrated, mini-
invasive method of hemodynamic monitoring (any
arterial line connected to any transducer, no dedicated
disposable) based on the PRAM algorithm (pressure
recording analytical method). PRAM analyses the
whole arterial pressure waveform (both systole and
diastole) beat to beat, with sampling rate of 1000 Hz
(in comparison with 100 Hz in other pulse contour
devices) and automatically detects all significant arterial
wave’s points: systolic and diastolic points, dicrotic
notch and all points of instability.

PRAM as another pulse contour method is based
as on the principle that in the arteries the volume
changes mainly because of the radial expansion of the
vessels in response to pressure variations during the
cardiac cycle. In distinction with other pulse contour
methods, PRAM is also based on the physics theory
of perturbations: a physical system under the effects
of a perturbing factor tends to react in order to re-
acquire its own stability [75]. According to this principle
PRAM will measure the whole systolic area under
the pressure curve (pulsatile and continuous) instead
of measuring only the pulsatile part of the pressure
curve as others pulse contour systems. SV is calculated
from pulsatile and continuous areas divided by the
impedance Z(t) which is obtained directly (requires no
other predicted data apart from the expected MAP)
from the morphological analysis of the pressure wave-
form (Equation 5) [76, 77].

v A A
T Z(  (P/txK
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where: A = the whole systolic area below the pressure
curve, Z(t) = total impedance = arterial impedance +
arterial compliance + SVR, K = the dimensional factor
inversely related to the instantaneous acceleration of the
vessel cross-sectional area (cm/sec? x ¢n?), P/t (mmHg/
sec) = the analytical description of the pressure wave
profile as changes in pressure (P) with time (t) along
each cardiac cycle

MostCare technology measures continuously not
only the SV, CI and CO but also other important
hemodynamic parameters: SVV, PPV, SPV, dP/dt max.
Since MostCare uses an algorithm of calculation highly
dependent on a very detailed arterial waveform ana-
lysis (point by point) intrinsic (aortic dissection, arterial
compression, atherosclerotic plaques near the tip of
the catheter, etc.) or extrinsic (air bubble, resonance
phenomenon) disturbances will lead to incorrect hemo-
dynamic measurements. Giomarelli et al. [78] demon-
strated in stable CABG patients (at different stages
from induction to postoperative ICU) a good agreement
between PRAM-CO and PAC-TD CO measurements
but more recent studies did not confirm at all this
relationship [79].

A good correlation with PAC-CO was also found
in sinus rhythm unstable patients after cardiac
surgery with ongoing high doses of inotropic drugs for
low cardiac output syndrome [80-81] but PRAM did
not compare well with thermodilution in unstable
patients with atrial fibrillation [82].

ClearSight system (Edwards Lifesciences® —
USA)

Currently, ClearSight is a part of the EV1000
platform (Edwards Lifesciences — USA) but it was
released under the name of ccNexfin (BMEYE B.V.
Amsterdam, The Netherlands). It uses a totally non-
invasive continuous blood pressure measurement
(based on the Finapres method) to measure the CO
continuously. The input parameters are represented
by the patient’s age, height and weight. The SV, CI
and CO are calculated without external calibration
although it can be calibrated externally from another
monitoring system. There are three major phases in
the SV and CCO measurement: measurement of con-
tinuous finger BP by the photoelectric photo-plethysmo-
graphy and volume clamp method, transformation of
the finger BP curve into a brachial artery waveform,
calculation of the SV and CCO from the brachial
arterial pressure pulse contour using a physiological,
three-element, non-linear Windkessel model of the
arterial input impedance (Zin). For measuring the
continuous BP and SV the technology uses a cuff
(wrapped around the middle phalanx of the 2, 3 or
4™ finger) which contains an infrared-LED emitter-
detector pair dedicated to measure the diameter of

the finger arteries. During the first phase the cuff
inflates and deflates (“‘volume clamp”) in order to keep
the diameter constant throughout the cardiac cycle.
The pressure needed to keep the diameter constant is
continuously recorded generating a real-time pressure
waveform. During the second phase a special algorithm
will transform the finger BP waveform to a brachial
artery BP waveform because the more proximal the
measurement is, the less errors are probable. Eventu-
ally, during the third phase the SV is calculated using a
pulse contour algorithm, dividing the pressure-time
integral by Zin. The Zin value is calculated taking into
account the patient’s data and based on the three-cle-
ment Windkessel afterload model (Zin = characteristic
impedance + arterial compliance + peripheral resis-
tance). ClearSight system uses an auto-calibration
algorithm (Physiocal) that periodically recalibrates the
system and a heart reference system which measures
and corrects for the vertical height between the finger
cuff and the heart. The technique is not applicable in
low flow in the finger arteries, hypothermia, or peri-
pheral oedema. ClearSight CO has been studied in
cardiac surgical patients against PAC and PiCCO and
has demonstrated a limited accuracy and precision and
a high percentage error (weighted average of 41%)
[83-91], but reliably track preload-induced changes in
CO [92-94]. ClearSight was less accurate in patients
with low CO, hypothermia and high SVR but performed
better in patients with high CO [95]. It measures also
SVV and PPV and these dynamic parameters (ob-
tained totally non-invasive) were able to predict the
fluid responsiveness in an accurate manner [96-97].

The limits of the pulse waveform
technology

Despite the fact that the various types of apparatus
described above uses various types of algorithms in
order to estimate the SV, the APW method is based
on the hypothesis that the SV value is directly pro-
portional with the area under the systolic part of the
APW and inversely with the impedance. In conse-
quence, this technology is strongly influenced by aortic
impedance, arterial compliance and SVR. The cali-
brated APW analyzers were proven to agree better
when measuring the SV and CO in comparison with
the PAC-CO and TPTD (in all categories of patients,
cardiac surgical included) than the uncalibrated APW
analyzers [22-28, 62].

On the other hand all these devices (calibrated or
not) will be inaccurate and imprecise in patients with
artefacts of the arterial waveform, arrhythmias, severe
aortic valve regurgitation, aortic aneurysm, intra-
cardiac and extra cardiac shunts, intra-aortic balloon
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pump and in severe hemodynamic unstable conditions
[9, 40, 41, 75, 98]. Regarding the SVV and PPV mea-
sured by the APW systems (invasive or not, calibrated
or not), the studies performed in cardiac and non-
cardiac surgical patients demonstrated that these are
very good predictors of volume responsiveness [43-
46, 59, 65, 66, 95, 96].

The place of APW monitoring devices in
GDT in cardiac surgical patients

Despite the fact that the majority of the validation
studies with regard to APW techniques were per-
formed on cardiac surgical patients, the APW moni-
toring devices have been used only in three GDT-RCTs
regarding the cardiac surgical patient: two studies with
PiCCO technology [35, 36], and one study with
FloTrac/Vigileo [63]. On the other hand, in cardiac sur-
gical patients only another four RCT focused on GDT
were published: two of these studies used PAC [99,
100] and two used esophageal Doppler monitoring [ 101,
102] in the study arm. None of these seven GDT-RCT
(all were single-centered, less than 1,000 patients stu-
died in all studies between 1995 and 2012) demon-
strated their usefulness in decreasing mortality in
cardiac surgical patients, but they did reduce morbidity
(postoperative complications) and hospital length of
stay [5, 103, 104]. There are some potential causes
which could explain the fact that despite the application
of modern flow-related GDT protocols the results in
cardiac surgery are poor related to mortality and in
contrast with the data found in non-cardiac surgery.
The first reason to consider is the relatively low mor-
tality in cardiac surgery (1-5%) [105] in comparison
with the suggested group of patients that could benefit
the most from GDT protocols in terms of mortality:
namely those with a predicted mortality around 20%
[103-105]. Another explanation could be the hetero-
geneity of the multiple targets proposed in various GDT
protocols.

Conclusions

Currently, various algorithms based on APW ana-
lysis have been elaborated and the measurements of
SV and continuous CO based on this technology have
become part of our daily practice both in the operating
room and the ICU. Probably, the APW analyzers are
the most promising hemodynamic monitoring devices
because they are easy to use and provide parameters
able to be included in GDT strategies and above all
minimally invasive.

The calibrated APW methods are considered to be
more reliable in measuring the SV or CO and in tracking
the changes in CO.

Nowadays, among the APW devices only PiCCO
and Flotrac/Vigileo were used in GDT-RCT in cardiac
surgical patients. Despite the promising premises, the
APW monitoring devices did not demonstrate that they
played a role in decreasing mortality in that population
but only decreased the ventilation time and the ICU
and the hospital length of stay.
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Dispozitivele de monitorizare
hemodinamica a undei de puls: progrese
recente si locul in terapia tintita a
pacientului cardiac chirurgical

Rezumat

In ultima decada posibilititile de monitorizare
hemodinamica au evoluat enorm si s-au rafinat tehnic
urmand noul tip de abordare clinicd prin care s-a
renuntat la evaluarea staticd in favoarea conceptului
dinamic de definire a statusului hemodinamic. Astfel,

in practica clinica au intrat tot mai multe metode de
monitorizare hemodinamica bazate pe analiza curbei
presiunii arteriale (ACPA), unele dintre acestea
necesitdnd o calibrare initiala, altele nu, multe dintre
aceste metode fiind minim-invazive sau chiar non-
invazive. In aceasta lucrare am explicat principiile de
functionare ale acestor noi tehnici de monitorizare si
am analizat in mod sistematic avantajele precum si
limitele acestora, cu un accent special pe fiabilitatea
noilor metode in masurarea unor parametri uzuali
precum volumul bataia si debitul cardiac, dar si 1n
masurarea unor parametri dinamici ai predictiei
raspunsului debitului cardiac la administrarea de volum.
De asemenea, am analizat sistematic si rolul noilor
metode ACPA in strategiile de optimizare hemo-
dinamica adresate pacientului de chirurgie cardiaca.
In conformitate cu datele din cele trei studii randomizate
de optimizare perioperatorie publicate pana in prezent
si in care s-au utilizat metode de monitorizare bazate
pe tehnologia APCA (2 studii cu PiCCO si unul cu
FloTrac/Vigileo), utilizarea acestei tehnologii in
protocoalele respective nu a diminuat mortalitatea paci-
entilor de chirurgie cardiaca, cia produs doar o scadere
a perioadei de ventilatie mecanicd postoperatorie,
precum si a duratei sederii in terapie intensiva si in
spital.

Cuvinte cheie: monitorizare hemodinamica minim
invaziva i non invaziva, tehnologie bazata pe analiza
curbei presiunii arteriale, optimizare hemodinamica
perioperatorie prin protocoale tintite, chirurgie cardio-
vasculara
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